Generalized Sparse Regularization with Application to fMRI Brain Decoding
نویسندگان
چکیده
Many current medical image analysis problems involve learning thousands or even millions of model parameters from extremely few samples. Employing sparse models provides an effective means for handling the curse of dimensionality, but other propitious properties beyond sparsity are typically not modeled. In this paper, we propose a simple approach, generalized sparse regularization (GSR), for incorporating domain-specific knowledge into a wide range of sparse linear models, such as the LASSO and group LASSO regression models. We demonstrate the power of GSR by building anatomically-informed sparse classifiers that additionally model the intrinsic spatiotemporal characteristics of brain activity for fMRI classification. We validate on real data and show how prior-informed sparse classifiers outperform standard classifiers, such as SVM and a number of sparse linear classifiers, both in terms of prediction accuracy and result interpretability. Our results illustrate the added-value in facilitating flexible integration of prior knowledge beyond sparsity in large-scale model learning problems.
منابع مشابه
Generalized Sparse Classifiers for Decoding Cognitive States in fMRI
The high dimensionality of functional magnetic resonance imaging (fMRI) data presents major challenges to fMRI pattern classification. Directly applying standard classifiers often results in overfitting, which limits the generalizability of the results. In this paper, we propose a new group of classifiers, “Generalized Sparse Classifiers” (GSC), to alleviate this overfitting problem. GSC draws ...
متن کاملLarge-scale Inversion of Magnetic Data Using Golub-Kahan Bidiagonalization with Truncated Generalized Cross Validation for Regularization Parameter Estimation
In this paper a fast method for large-scale sparse inversion of magnetic data is considered. The L1-norm stabilizer is used to generate models with sharp and distinct interfaces. To deal with the non-linearity introduced by the L1-norm, a model-space iteratively reweighted least squares algorithm is used. The original model matrix is factorized using the Golub-Kahan bidiagonalization that proje...
متن کاملfMRI Visual Image Reconstruction Using Sparse Logistic Regression with a Tunable Regularization Parameter
fMRI has been a popular way for encoding and decoding human visual cortex activity. A previous research reconstructed binary image using a sparse logistic regression (SLR) with fMRI activity patterns as its input. In this article, based on SLR, we propose a new sparse logistic regression with a tunable regularization parameter (SLR-T), which includes the SLR and maximum likelihood regression (M...
متن کاملBenchmarking solvers for TV-ℓ1 least-squares and logistic regression in brain imaging
Learning predictive models from brain imaging data, as in decoding cognitive states from fMRI (functional Magnetic Resonance Imaging), is typically an ill-posed problem as it entails estimating many more parameters than available sample points. This estimation problem thus requires regularization. Total variation regularization, combined with sparse models, has been shown to yield good predicti...
متن کاملEstimation of functional connectivity in fMRI data using stability selection-based sparse partial correlation with elastic net penalty
Characterizing interactions between multiple brain regions is important for understanding brain function. Functional connectivity measures based on partial correlation provide an estimate of the linear conditional dependence between brain regions after removing the linear influence of other regions. Estimation of partial correlations is, however, difficult when the number of regions is large, a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Information processing in medical imaging : proceedings of the ... conference
دوره 22 شماره
صفحات -
تاریخ انتشار 2011